Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Breath Res ; 18(2)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38502958

RESUMO

Clostridioides difficileinfection (CDI) is the leading cause of hospital-acquired infective diarrhea. Current methods for diagnosing CDI have limitations; enzyme immunoassays for toxin have low sensitivity andClostridioides difficilepolymerase chain reaction cannot differentiate infection from colonization. An ideal diagnostic test that incorporates microbial factors, host factors, and host-microbe interaction might characterize true infection. Assessing volatile organic compounds (VOCs) in exhaled breath may be a useful test for identifying CDI. To identify a wide selection of VOCs in exhaled breath, we used thermal desorption-gas chromatography-mass spectrometry to study breath samples from 17 patients with CDI. Age- and sex-matched patients with diarrhea and negativeC.difficiletesting (no CDI) were used as controls. Of the 65 VOCs tested, 9 were used to build a quadratic discriminant model that showed a final cross-validated accuracy of 74%, a sensitivity of 71%, a specificity of 76%, and a receiver operating characteristic area under the curve of 0.72. If these findings are proven by larger studies, breath VOC analysis may be a helpful adjunctive diagnostic test for CDI.


Assuntos
Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Testes Respiratórios/métodos , Cromatografia Gasosa-Espectrometria de Massas , Curva ROC , Diarreia
2.
J Breath Res ; 18(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38290132

RESUMO

Exhaustive exercise can induce unique physiological responses in the lungs and other parts of the human body. The volatile organic compounds (VOCs) in exhaled breath are ideal for studying the effects of exhaustive exercise on the lungs due to the proximity of the breath matrix to the respiratory tract. As breath VOCs can originate from the bloodstream, changes in abundance should also indicate broader physiological effects of exhaustive exercise on the body. Currently, there is limited published data on the effects of exhaustive exercise on breath VOCs. Breath has great potential for biomarker analysis as it can be collected non-invasively, and capture real-time metabolic changes to better understand the effects of exhaustive exercise. In this study, we collected breath samples from a small group of elite runners participating in the 2019 Ultra-Trail du Mont Blanc ultra-marathon. The final analysis included matched paired samples collected before and after the race from 24 subjects. All 48 samples were analyzed using the Breath Biopsy Platform with GC-Orbitrap™ via thermal desorption gas chromatography-mass spectrometry. The Wilcoxon signed-rank test was used to determine whether VOC abundances differed between pre- and post-race breath samples (adjustedP-value < .05). We identified a total of 793 VOCs in the breath samples of elite runners. Of these, 63 showed significant differences between pre- and post-race samples after correction for multiple testing (12 decreased, 51 increased). The specific VOCs identified suggest the involvement of fatty acid oxidation, inflammation, and possible altered gut microbiome activity in response to exhaustive exercise. This study demonstrates significant changes in VOC abundance resulting from exhaustive exercise. Further investigation of VOC changes along with other physiological measurements can help improve our understanding of the effect of exhaustive exercise on the body and subsequent differences in VOCs in exhaled breath.


Assuntos
Líquidos Corporais , Compostos Orgânicos Voláteis , Humanos , Testes Respiratórios/métodos , Compostos Orgânicos Voláteis/análise , Expiração , Cromatografia Gasosa-Espectrometria de Massas/métodos , Líquidos Corporais/química
3.
Biomedicines ; 11(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38001958

RESUMO

Background: Cirrhosis detection in primary care relies on low-performing biomarkers. Consequently, up to 75% of subjects with cirrhosis receive their first diagnosis with decompensation when causal treatments are less effective at preserving liver function. We investigated an unprecedented approach to cirrhosis detection based on dynamic breath testing. Methods: We enrolled 29 subjects with cirrhosis (Child-Pugh A and B), and 29 controls. All subjects fasted overnight. Breath samples were taken using Breath Biopsy® before and at different time points after the administration of 100 mg limonene. Absolute limonene breath levels were measured using gas chromatography-mass spectrometry. Results: All subjects showed a >100-fold limonene spike in breath after administration compared to baseline. Limonene breath kinetics showed first-order decay in >90% of the participants, with higher bioavailability in the cirrhosis group. At the Youden index, baseline limonene levels showed classification performance with an area under the roc curve (AUROC) of 0.83 ± 0.012, sensitivity of 0.66 ± 0.09, and specificity of 0.83 ± 0.07. The best performing timepoint post-administration was 60 min, with an AUROC of 0.91, sensitivity of 0.83 ± 0.07, and specificity of 0.9 ± 0.06. In the cirrhosis group, limonene bioavailability showed a correlation with MELD and fibrosis indicators, and was associated with signs of portal hypertension. Conclusions: Dynamic limonene breath testing enhances diagnostic performance for cirrhosis compared to static testing. The correlation with disease severity suggests potential for monitoring therapeutic interventions. Given the non-invasive nature of breath collection, a dynamic limonene breath test could be implemented in primary care.

4.
J Clin Transl Hepatol ; 11(3): 638-648, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36969895

RESUMO

Background and Aims: The prevalence of chronic liver disease in adults exceeds 30% in some countries and there is significant interest in developing tests and treatments to help control disease progression and reduce healthcare burden. Breath is a rich sampling matrix that offers non-invasive solutions suitable for early-stage detection and disease monitoring. Having previously investigated targeted analysis of a single biomarker, here we investigated a multiparametric approach to breath testing that would provide more robust and reliable results for clinical use. Methods: To identify candidate biomarkers we compared 46 breath samples from cirrhosis patients and 42 from controls. Collection and analysis used Breath Biopsy OMNI™, maximizing signal and contrast to background to provide high confidence biomarker detection based upon gas chromatography mass spectrometry (GC-MS). Blank samples were also analyzed to provide detailed information on background volatile organic compounds (VOCs) levels. Results: A set of 29 breath VOCs differed significantly between cirrhosis and controls. A classification model based on these VOCs had an area under the curve (AUC) of 0.95±0.04 in cross-validated test sets. The seven best performing VOCs were sufficient to maximize classification performance. A subset of 11 VOCs was correlated with blood metrics of liver function (bilirubin, albumin, prothrombin time) and separated patients by cirrhosis severity using principal component analysis. Conclusions: A set of seven VOCs consisting of previously reported and novel candidates show promise as a panel for liver disease detection and monitoring, showing correlation to disease severity and serum biomarkers at late stage.

5.
Biomedicines ; 9(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34829792

RESUMO

The gold standard method for chronic liver diseases diagnosis and staging remains liver biopsy, despite the spread of less invasive surrogate modalities based on imaging and blood biomarkers. Still, more than 50% of chronic liver disease cases are detected at later stages when patients exhibit episodes of liver decompensation. Breath analysis represents an attractive means for the development of non-invasive tests for several pathologies, including chronic liver diseases. In this perspective review, we summarize the main findings of studies that compared the breath of patients with chronic liver diseases against that of control subjects and found candidate biomarkers for a potential breath test. Interestingly, identified compounds with best classification performance are of exogenous origin and used as flavoring agents in food. Therefore, random dietary exposure of the general population to these compounds prevents the establishment of threshold levels for the identification of disease subjects. To overcome this limitation, we propose the exogenous volatile organic compounds (EVOCs) probe approach, where one or multiple of these flavoring agent(s) are administered at a standard dose and liver dysfunction associated with chronic liver diseases is evaluated as a washout of ingested compound(s). We report preliminary results in healthy subjects in support of the potential of the EVOC Probe approach.

6.
Clin Transl Gastroenterol ; 11(9): e00239, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33094960

RESUMO

INTRODUCTION: Liver cirrhosis and its complication - hepatocellular carcinoma (HCC) - have been associated with increased exhaled limonene. It is currently unclear whether this increase is more strongly associated with the presence of HCC or with the severity of liver dysfunction. METHODS: We compared the exhaled breath of 40 controls, 32 cirrhotic patients, and 12 cirrhotic patients with HCC using the Breath Biopsy platform. Breath samples were analyzed by thermal desorption-gas chromatography-mass spectrometry. Limonene levels were compared between the groups and correlated to bilirubin, albumin, prothrombin time international normalized ratio, and alanine aminotransferase. RESULTS: Breath limonene concentration was significantly elevated in subjects with cirrhosis-induced HCC (M: 82.1 ng/L, interquartile range [IQR]: 16.33-199.32 ng/L) and cirrhosis (M: 32.6 ng/L, IQR: 6.55-123.07 ng/L) compared with controls (M: 6.2 ng/L, IQR: 2.62-9.57 ng/L) (P value = 0.0005 and 0.0001, respectively) with no significant difference between 2 diseased groups (P value = 0.37). Levels of exhaled limonene correlated with serum bilirubin (R = 0.25, P value = 0.0016, r = 0.51), albumin (R = 0.58, P value = 5.3e-8, r = -0.76), and international normalized ratio (R = 0.29, P value = 0.0003, r = 0.51), but not with alanine aminotransferase (R = 0.01, P value = 0.36, r = 0.19). DISCUSSION: Exhaled limonene levels are primarily affected by the presence of cirrhosis through reduced liver functional capacity, as indicated by limonene correlation with blood metrics of impaired hepatic clearance and protein synthesis capacity, without further alterations observed in subjects with HCC. This suggests that exhaled limonene is a potential non-invasive marker of liver metabolic capacity (see Visual abstract, Supplementary Digital Content 1, http://links.lww.com/CTG/A388).


Assuntos
Carcinoma Hepatocelular/diagnóstico , Limoneno/análise , Cirrose Hepática/diagnóstico , Neoplasias Hepáticas/diagnóstico , Compostos Orgânicos Voláteis/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Testes Respiratórios , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/fisiopatologia , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Fígado/patologia , Fígado/fisiopatologia , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Testes de Função Hepática/métodos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Índice de Gravidade de Doença
7.
J Breath Res ; 14(3): 030202, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32662449

RESUMO

November 2019 saw Cambridge, UK play host to the second Breath Biopsy Conference, a community-focused event aimed at sharing and supporting advancements in the collection and analysis of volatile organic compounds in exhaled breath. The event expanded upon the previous year's format, spanning two days and concluding with an expert panel discussion. Presentations covered detection, monitoring and precision medicine studies examining diseases including asthma, cirrhosis, cancer and tuberculosis. The meeting attracted representatives from diverse backgrounds, such as metabolomics, artificial intelligence, clinical research and chemical analysis. This meeting report offers an overview of what was presented and discussed during the conference.


Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Expiração , Inteligência Artificial , Biópsia , Humanos , Compostos Orgânicos Voláteis/análise
8.
J Breath Res ; 13(3): 032001, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30965287

RESUMO

Breath research has almost invariably focussed on the identification of endogenous volatile organic compounds (VOCs) as disease biomarkers. After five decades, a very limited number of breath tests measuring endogenous VOCs is applied to the clinic. In this perspective article, we explore some of the factors that may have contributed to the current lack of clinical applications of breath endogenous VOCs. We discuss potential pitfalls of experimental design, analytical challenges, as well as considerations regarding the biochemical pathways that may impinge on the application of endogenous VOCs as specific disease biomarkers. We point towards several lines of evidence showing that breath analysis based on administration of exogenous compounds has been a more successful strategy, with several tests currently applied to the clinic, compared to measurement of endogenous VOCs. Finally, we propose a novel approach, based on the use of exogenous VOC (EVOC) probes as potential strategy to measure the activity of metabolic enzymes in vivo, as well as the function of organs, through breath analysis. We present longitudinal data showing the potential of EVOC probe strategies in breath analysis. We also gathered important data showing that administration of EVOC probes induces significant changes compared to previous exposures to the same compounds. EVOC strategies could herald a new wave of substrate-based breath tests, potentially bridging the gap between research tools and clinical applications.


Assuntos
Testes Respiratórios/métodos , Redes e Vias Metabólicas/fisiologia , Compostos Orgânicos Voláteis/química , Humanos , Compostos Orgânicos Voláteis/análise
9.
J Chromatogr A ; 1278: 76-81, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23336944

RESUMO

The incorporation of a chip-based high field asymmetric waveform ion mobility spectrometry (FAIMS) separation in the ultra (high)-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) determination of the (R/S) ibuprofen 1-ß-O-acyl glucuronide metabolite in urine is reported. UHPLC-FAIMS-HRMS reduced matrix chemical noise, improved the limit of quantitation approximately two-fold and increased the linear dynamic range compared to the determination of the metabolite without FAIMS separation. A quantitative evaluation of the prototype UHPLC-FAIMS-HRMS system showed better reproducibility for the drug metabolite (%RSD 2.7%) at biologically relevant concentrations in urine. In-source collision induced dissociation of the FAIMS-selected deprotonated metabolite was used to fragment the ion prior to mass analysis, enhancing selectivity by removing co-eluting species and aiding the qualitative identification of the metabolite by increasing the signal-to-noise ratio of the fragment ions.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Glucuronatos/urina , Ibuprofeno/análogos & derivados , Espectrometria de Massas/métodos , Humanos , Ibuprofeno/urina
10.
Anal Chem ; 84(9): 4095-103, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22455620

RESUMO

Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (FAIMS) is used for the selective transmission of differential mobility-selected ions prior to in-source collision-induced dissociation (CID) and time-of-flight mass spectrometry (TOFMS) analysis. The FAIMS-in-source collision induced dissociation-TOFMS (FISCID-MS) method requires only minor modification of the ion source region of the mass spectrometer and is shown to significantly enhance analyte detection in complex mixtures. Improved mass measurement accuracy and simplified product ion mass spectra were observed following FAIMS preselection and subsequent in-source CID of ions derived from pharmaceutical excipients, sufficiently close in m/z (17.7 ppm mass difference) that they could not be resolved by TOFMS alone. The FISCID-MS approach is also demonstrated for the qualitative and quantitative analysis of mixtures of peptides with FAIMS used to filter out unrelated precursor ions thereby simplifying the resulting product ion mass spectra. Liquid chromatography combined with FISCID-MS was applied to the analysis of coeluting model peptides and tryptic peptides derived from human plasma proteins, allowing precursor ion selection and CID to yield product ion data suitable for peptide identification via database searching. The potential of FISCID-MS for the quantitative determination of a model peptide spiked into human plasma in the range of 0.45-9.0 µg/mL is demonstrated, showing good reproducibility (%RSD < 14.6%) and linearity (R(2) > 0.99).


Assuntos
Excipientes/química , Espectrometria de Massas/instrumentação , Peptídeos/sangue , Desenho de Equipamento , Humanos , Íons/química , Espectrometria de Massas/métodos , Peptídeos/química , Sensibilidade e Especificidade
11.
Anal Chem ; 81(15): 6489-95, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19583243

RESUMO

The maximum electric field intensity (E) in field asymmetric waveform ion mobility spectrometry (FAIMS) analyses was doubled to E > 60 kV/cm. In earlier devices with >0.5 mm gaps, such strong fields cause electrical breakdown for nearly all gases at ambient pressure. As the Paschen curves are sublinear, thinner gaps permit higher E: here, we established 61 kV/cm in N(2) using microchips with 35 microm gaps. As FAIMS efficiency is exceptionally sensitive to E, such values can in theory accelerate analyses at equal resolution by over an order of magnitude. Here we demonstrate FAIMS filtering in approximately 20 micros or approximately 1% of the previously needed time, with a resolving power of about half that for "macroscopic" units but sufficing for many applications. Microscopic gaps enable concurrent ion processing in multiple (here, 47) channels, which greatly relaxes the charge capacity constraints of planar FAIMS designs. These chips were integrated with a beta-radiation ion source and charge detector. The separation performance is in line with first-principles modeling that accounts for high-field and anisotropic ion diffusion. By extending FAIMS operation into the previously inaccessible field range, the present instrument advances the capabilities for research into ion transport and expands options for separation of hard-to-resolve species.


Assuntos
Eletroquímica , Íons/metabolismo , Dispositivos Lab-On-A-Chip , Fragmentos de Peptídeos/análise , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Biologia Computacional , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...